新上传资料388套 / 总1188,912

新注册会员35人 / 总7910,418

首页 > 真题 > 高三
 

2015《三维设计》高考物理大一轮复习—配套Word版文档:第九章 电磁感应(含近三年考点分布及15年考向前瞻)

上传时间: 2014-10-13

上传者: admin

星级: 零星级

文件大小: 152KB

分享到: 更多


立即下载

所需下载精品点:0

免费下载:

喜讯:云计班班通倡导免费下载,首次注册即赠送 500 精品点,邮箱验证赠送 60 精品点,完成首个资源下载赠送 60 精品点,每天登陆赠送 20 精品点。

 

上传资源:一星加5点,二星加10点,三星加20点,四星加60点,五星加120点。比如某资源被评五星,课件每被下载一次,给上传者送120*60%精品点,下载10次,上传者被加720精品点。各位老师多多上传,共建免费课件资源下载平台。

 

第九章 电 磁 感 应
                                           (1)从近三年高考试题考点分布可以看
出,高考对本章内容的考查重点有感应电流的产生、感应电动势方向的判断、感应电动势大小的计算、自感现象和涡流现象等。
(2)高考对本章知识的考查多以选择题和计算题形式出现,常以选择题形式考查基础知识、基本规律的理解和应用;计算题主要是以综合性的题目出现,考查本章知识与其他相关知识综合,如与运动、力学、能量、电路、图像等,题目综合性强,分值较重。

2015高考考向前瞻预计在2015年的高考中,本章热点仍是滑轨类问题,线框穿越有界匀强磁场问题,电磁感应图像问题,电磁感应的能量问题,其涉及的知识多,考查学生的分析综合能力及运用数学知识解决物理问题的能力,命题仍会倾向于上述热点内容,侧重于本章知识与相关知识的综合应用,以大型综合题出现的可能性非常大。

第1节电磁感应现象__楞次定律


磁通量
[想一想]
如图9-1-1所示,在条形磁铁外套有A、B两个大小不同的圆环,穿过A环的磁通量ΦA和穿过B环的磁通量ΦB大小关系是什么?21*cnjy*com

图9-1-1
提示:ΦA>ΦB
[记一记]
1.定义
磁场中穿过磁场某一面积S的磁感线条数定义为穿过该面积的磁通量。
2.公式
Φ=BS。
3.单位
1 Wb=1_T·m2。
[试一试]
1.如图9-1-2所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化分别为ΔΦ1和ΔΦ2,则(  )

图9-1-2
A.ΔΦ1>ΔΦ2        B.ΔΦ1=ΔΦ2
C.ΔΦ1<ΔΦ2    D.不能判断
解析:选C 导体MN周围的磁场并非匀强磁场,靠近MN处的磁场强些,磁感线密一些,远离MN处的磁感线疏一些,当线框在Ⅰ位置时,穿过平面的磁通量为ΦI,当线框平移到Ⅱ位置时,磁通量为ΦⅡ,则磁通量的变化量为ΔΦ1=|ΦⅡ-ΦⅠ|=ΦⅠ-ΦⅡ。当线框翻转至Ⅱ位置时,磁感线相当于从“反面”穿过平面,则磁通量为-ΦⅡ,则磁通量的变化量是ΔΦ2=|-ΦⅡ-ΦⅠ|=ΦⅠ+ΦⅡ,所以ΔΦ1<ΔΦ2。

电磁感应现象
[想一想] 
法拉第圆盘发电机中,似乎穿过闭合电路的磁通量没有变化,怎么能产生感应电流?

图9-1-3
提示:随着圆盘的转动,定向运动电子受到洛伦兹力作用,造成正、负电荷分别向圆盘中心和边缘累积,产生电动势,进而产生感应电流。也可把圆盘看成由许多根“辐条”并联,圆盘转动,每根“辐条”做切割磁感线运动产生电动势,进而产生感应电流。
[记一记]
1.电磁感应现象
当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
2.产生感应电流的条件
表述1
闭合电路的一部分导体在磁场内做切割磁感线运动。
表述2
穿过闭合电路的磁通量发生变化。
3.产生电磁感应现象的实质
电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势而无感应电流。
[试一试]
2.(多选)如图9-1-4所示,一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出。已知匀强磁场区域的宽度L大于线框的高度h,下列说法正确的是(  )

图9-1-4
A.线框只在进入和穿出磁场的过程中,才有感应电流产生
B.线框从进入到穿出磁场的整个过程中,都有感应电流产生
C.线框在进入和穿出磁场的过程中,都是机械能转化成电能
D.整个线框都在磁场中运动时,机械能转化成电能
解析:选AC 产生感应电流的条件是穿过闭合回路的磁通量发生变化,线框全部在磁场中时,磁通量不变,不产生感应电流,故选项B、D错误。线框进入和穿出磁场的过程中磁通量发生变化,产生了感应电流,故选项A正确。在产生感应电流的过程中线框消耗了机械能,故选项C正确。【来源:21·世纪·教育·网】

楞次定律 右手定则
[想一想] 
用如图9-1-5所示的实验装置来验证楞次定律,当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是怎样的。

图9-1-5
提示:磁铁磁感线的方向是从上到下,磁铁穿过的过程中,磁通量向下先增加后减少,由楞次定律判断知,磁通量向下增加时,感应电流的磁场阻碍增加,方向向上,根据安培定则知感应电流的方向为a→G→b;磁通量向下减少时,感应电流的磁场应该向下,感应电流方向为b→G→a。
[记一记]
1.楞次定律
(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则
(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用情况:导体切割磁感线产生感应电流。
——————————————————————————————————————
物理学史链接……………………………………………………………………背背就能捞分
1.英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
2.俄国物理学家楞次发表了确定感应电流方向的定律——楞次定律
——————————————————————————————————————
 [试一试]
3.如图9-1-6所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是(  )

图9-1-6
A.三者同时落地
B.甲、乙同时落地,丙后落地
C.甲、丙同时落地,乙后落地
D.乙、丙同时落地,甲后落地
解析:选D 甲是铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙没有闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D正确。



考点一电磁感应现象的判断
[例1] (多选)(2014·德州模拟)线圈在长直导线电流的磁场中,做如图9-1-7所示的运动:A向右平动,B向下平动,C绕轴转动(ad边向外转动角度θ≤90°),D向上平动(D线圈有个缺口),判断线圈中有感应电流的是(  )

图9-1-7
[解析] 选BC A中线圈向右平动,穿过线圈的磁通量没有变化,故A线圈中没有感应电流;B中线圈向下平动,穿过线圈的磁通量减少,必产生感应电动势和感应电流;C中线圈绕轴转动,穿过线圈的磁通量变化(开始时减小),必产生感应电动势和感应电流;D中线圈由于有个缺口不会产生感应电流。故B、C正确。
[例2] 如图9-1-8所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。在下列各过程中,一定能在轨道回路里产生感应电流的是(  )

图9-1-8
A.ab向右运动,同时使θ减小
B.使磁感应强度B减小,θ角同时也减小
C.ab向左运动,同时增大磁感应强度B
D.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)
[解析] 选A 设此时回路面积为S,据题意,磁通量Φ=BScos θ,对A,S增大,θ减小,cos θ增大,则Φ增大,A正确;对B,B减小,θ减小,cos θ增大,Φ可能不变,B错误;对C,S减小,B增大,Φ可能不变,C错误;对D,S增大,B增大,θ增大,cos θ减小,Φ可能不变,D错误。

判断电磁感应现象是否发生的一般流程


考点二楞次定律的理解和应用
[例3] (2014·盐城模拟)某同学设计了一个电磁冲击钻,其原理示意图如图9-1-9所示,若发现钻头M突然向右运动,则可能是(  )

图9-1-9
A.开关S由断开到闭合的瞬间
B.开关S由闭合到断开的瞬间
C.保持开关S闭合,变阻器滑片P加速向右滑动
D.保持开关S闭合,变阻器滑片P匀速向右滑动
[解析] 选A 若发现钻头M突然向右运动,则两螺线管互相排斥,根据楞次定律,可能是开关S由断开到闭合的瞬间,选项A正确。
[例4] (2014·南京质检)长直导线与闭合金属线框位于同一平面内,长直导线中的电流i随时间t的变化关系如图9-1-10所示。在0~时间内,直导线中电流向上。则在~T时间内,线框中感应电流的方向与所受安培力情况是(  )

图9-1-10
A.感应电流方向为顺时针,线框受安培力的合力方向向左
B.感应电流方向为顺时针,线框受安培力的合力方向向右
C.感应电流方向为逆时针,线框受安培力的合力方向向右
D.感应电流方向为逆时针,线框受安培力的合力方向向左
[解析] 选B 在~T时间内,由楞次定律可知,线框中感应电流的方向为顺时针,由左手定则可判断线框受安培力的合力方向向右,选项B正确。
[例5] (多选)如图9-1-11所示,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布。一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速释放,在圆环从a摆向b的过程中(  )

图9-1-11
A.感应电流方向先逆时针后顺时针再逆时针
B.感应电流的方向一直是逆时针
C.安培力方向始终与速度方向相反
D.安培力方向始终沿水平方向
[解析] 选AD 圆环从位置a无初速释放,在到达磁场分界线之前,穿过圆环向里的磁感线条数增加,根据楞次定律可知,圆环内感应电流的方向为逆时针,圆环经过磁场分界线之时,穿过圆环向里的磁感线条数减少,根据楞次定律可知,圆环内感应电流的方向为顺时针;圆环通过磁场分界线之后,穿过圆环向外的磁感线条数减少,根据楞次定律可知,圆环内感应电流的方向为逆时针;因磁场在竖直方向分布均匀,圆环所受竖直方向的安培力平衡,故总的安培力沿水平方向。综上所述,正确选项为A、D。

1.楞次定律中“阻碍”的含义

2.感应电流方向判断的两种方法
方法一 用楞次定律判断

方法二 用右手定则判断
该方法适用于部分导体切割磁感线。判断时注意掌心、四指、拇指的方向:
(1)掌心——磁感线垂直穿入;
(2)拇指——指向导体运动的方向;
(3)四指——指向感应电流的方向。
考点三楞次定律、右手定则、左手定则、安培定则的综合应用
1.规律比较
基本现象
应用的定则或定律

运动电荷、电流产生磁场
安培定则

磁场对运动电荷、电流的作用力
左手定则

电磁感应
部分导体切割磁感线运动
右手定则


闭合回路磁通量的变化
楞次定律

2.应用区别
关键是抓住因果关系:
(1)因电而生磁(I→B)→安培定则;
(2)因动而生电(v、B→I)→右手定则;
(3)因电而受力(I、B→F安)→左手定则。
3.相互联系
(1)应用楞次定律,一般要用到安培定则;
(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定。21·cn·jy·com
[例6] (多选)如图9-1-12所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是(  )www.21-cn-jy.com

图9-1-12
A.向右加速运动
B.向左加速运动
C.向右减速运动
D.向左减速运动
[思路点拨]
(1)如何判断MN所在处的磁场方向?由MN的运动方向,如何进一步判断MN中的电流方向?
提示:根据安培定则判断ab中电流产生的磁场方向,进而确定MN处的磁场方向为垂直纸面向里,再由左手定则判断MN中电流的方向,应为由M到N。  21*cnjy*com
(2)如何判断线圈L1中的磁场方向和L2中磁场的方向及变化情况?
提示:根据安培定则判断L1中的磁场方向,再由楞次定律判断L2中磁场的方向及变化。
(3)如何判断PQ的运动情况?
提示:已知L2中的磁场方向及变化情况,可根据安培定则和右手定则判断PQ的运动情况。
[解析] 选BC MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里MN中的感应电流由M→NL1中感应电流的磁场方向向上;若L2中磁场方向向上减弱PQ中电流为Q→P且减小向右减速运动;若L2中磁场方向向下增强PQ中电流为P→Q且增大向左加速运动。

应用左手定则和右手定则的注意事项
(1)右手定则与左手定则的区别:抓住“因果关系”才能无误,“因动而电”——用右手;“因电而动”——用左手。
(2)使用中左手定则和右手定则很容易混淆,为了便于区分,可把两个定则简单地总结为“通电受力用左手,运动生电用右手”。“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手。

(多选)如图9-1-13所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出。左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处在垂直于纸面向外的匀强磁场中。下列说法中正确的是(  )

图9-1-13
A.当金属棒ab向右匀速运动时,a点电势高于b点,c点电势高于d点
B.当金属棒ab向右匀速运动时,b点电势高于a点,c点与d点等电势
C.当金属棒ab向右加速运动时,b点电势高于a点,c点电势高于d点
D.当金属棒ab向右加速运动时,b点电势高于a点,d点电势高于c点
解析:选BD 当金属棒向右匀速运动而切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向由a→b。根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点。又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流。
当ab向右做加速运动时,由右手定则可推断φb>φa,电流沿逆时针方向。又由E=BLv可知ab导体两端的E不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边电路的线圈中的向上的磁通量不断增加。由楞次定律可判断右边电路的感应电流方向应沿逆时针,而在右线圈组成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上。把这个线圈看作电源,由于电流是从c沿内电路(即右线圈)流向d,所以d点电势高于c点。




[典例] (多选)如图9-1-14所示,光滑固定的金属导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,一条形磁铁从高处下落接近回路时(  )

图9-1-14
A.P、Q将相互靠拢
B.P、Q将相互远离
C.磁铁的加速度仍为g
D.磁铁的加速度小于g
[解析] 法一:设磁铁下端为N极,如图9-1-15所示,根据楞次定律可判断出P、Q中的感应电流方向,根据左手定则可判断P、Q所受安培力的方向。可见,P、Q将互相靠拢。由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g。当磁铁下端为S极时,根据类似的分析可得到相同的结果,所以,本题应选A、D。21教育网

图9-1-15
法二:根据楞次定律的另一种表述——感应电流的效果,总要反抗产生感应电流的原因。本题中“原因”是回路中磁通
量的增加,归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近。所以,P、Q将互相靠近且磁铁的加速度小于g,应选A、D。
[答案] AD
[题后悟道]
应用楞次定律及其推论时,要注意“阻碍”的具体含义
(1)从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
(2)从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)从阻碍电流的变化(自感现象)理解为:阻碍电流的变化,增则反,减则同。

如图9-1-16所示,导轨间的磁场方向垂直于纸面向里,当导线MN在导轨上向右加速滑动时,正对电磁铁A的圆形金属环B中(  )

图9-1-16
A.有感应电流,且B被A吸引
B.无感应电流
C.可能有,也可能没有感应电流
D.有感应电流,且B被A排斥
解析:选D MN向右加速滑动,根据右手定则,MN中的电流方向从N→M,且大小在逐渐变大,根据安培定则知,电磁铁A的左端为N极,且磁场强度逐渐增强,根据楞次定律知,B环中的感应电流产生的内部磁场方向向右,B被A排斥。故D正确。



[随堂对点训练]
1.(2014·宁波期末)如图9-1-17所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是(  )

图9-1-17
解析:选B 根据产生感应电流的条件,闭合回路内磁通量变化产生感应电流,能够产生感应电流的是图B。
2.(2014·荆门调研)老师让学生观察一个物理小实验:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是(  )

图9-1-18
A.磁铁插向左环,横杆发生转动
B.磁铁插向右环,横杆发生转动
C.把磁铁从左环中拔出,左环会跟着磁铁运动
D.把磁铁从右环中拔出,右环不会跟着磁铁运动
解析:选B 磁铁插向右环,横杆发生转动;磁铁插向左环,由于左环不闭合,没有感应电流产生,横杆不发生转动,选项A错误B正确;把磁铁从左环中拔出,左环不会跟着磁铁运动,把磁铁从右环中拔出,右环会跟着磁铁运动,选项C、D错误。
3.(2014·连云港摸底)如图9-1-19所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行,且AB、OO′所在平面与线圈平面垂直。若要在线圈中产生abcda方向的感应电流,可行的做法是(  )

图9-1-19
A.AB中电流I逐渐增大
B.AB中电流I先增大后减小
C.AB正对OO′,逐渐靠近线圈
D.线圈绕OO′轴逆时针转动90°(俯视)
解析:选D 若要在线圈中产生abcda方向的感应电流,可行的做法是线圈绕OO′轴逆时针转动90°,选项D正确。
4.(多选)(2014·苏州模拟)如图9-1-20所示,在一个水平放置的闭合线圈上方有一条形磁铁,现要在线圈中产生顺时针方向的电流(从上向下看),那么下列选项中可以做到的是(  )

图9-1-20
A.磁铁下端为N极,磁铁向上运动
B.磁铁上端为N极,磁铁向上运动
C.磁铁下端为N极,磁铁向下运动
D.磁铁上端为N极,磁铁向下运动
解析:选AD 由安培定则可知,感应电流的磁场方向向下;当磁铁向上运动时,穿过线圈的磁通量变小,由楞次定律可知,原磁场方向向下,因此磁铁的下端是N极,上端是S极,故A正确,B错误;由安培定则可知,感应电流的磁场方向向下,当磁铁向下运动时,穿过线圈的磁通量变大,由楞次定律可知,原磁场方向向上,因此磁铁的下端是S极,上端是N极,故C错误,D正确。
5.如图9-1-21所示,在两个沿竖直方向的匀强磁场中,分别放入两个完全一样的水平金属圆盘a和b。它们可以绕竖直轴自由转动,用导线通过电刷把它们相连。当圆盘a转动时(  )

图9-1-21
A.圆盘b总是与a沿相同方向转动
B.圆盘b总是与a沿相反方向转动
C.若B1、B2同向,则a、b转向相同
D.若B1、B2反向,则a、b转向相同
解析:选D 当圆盘a转动时,由于切割磁感线而产生感应电流,该电流流入b盘中,在磁场中由于受安培力b盘会转动。但若不知B1、B2的方向关系则b盘与a盘的转向关系将无法确定。故A、B错。设B1、B2同向且向上。a盘逆时针转动,则由右手定则可知a盘中的感应电流由a→a′,b盘受力将顺时针转动,故C错,同理可判定D项正确。
[课时跟踪检测]
一、单项选择题
1.(2014·苏北联考)如图1所示,一条形磁铁从左向右匀速穿过线圈,当磁铁经过A、B两位置时,线圈中(  )

图1
A.感应电流方向相同,感应电流所受作用力的方向相同
B.感应电流方向相反,感应电流所受作用力的方向相反
C.感应电流方向相反,感应电流所受作用力的方向相同
D.感应电流方向相同,感应电流所受作用力的方向相反
解析:选C 当磁铁经过A位置时,线圈中磁通量增大,由楞次定律可知,线圈中感应电流从左向右看为顺时针方向;当磁铁经过B位置时,线圈中磁通量减小,由楞次定律可知,线圈中感应电流从左向右看为逆时针方向,感应电流所受作用力的方向相同,选项A、B、D错误,C正确。
2.(2012·海南高考)如图2,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过。现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ。设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则(  )

图2
A.T1>mg,T2>mg
B.T1<mg,T2<mg
C.T1>mg,T2<mg
D.T1<mg,T2>mg
解析:选A 环从位置Ⅰ释放下落,环经过磁铁上端和下端附近时,环中磁通量都变化,都产生感应电流,由楞次定律可知,磁铁阻碍环下落,磁铁对圆环有向上的作用力。根据牛顿第三定律,圆环对磁铁有向下的作用力,所以T1>mg,T2>mg,选项A正确。
3.(2012·北京高考)物理课上,老师做了一个奇妙的“跳环实验”。如图3,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环。闭合开关S的瞬间,套环立刻跳起。某同学另找来器材再探究此实验。他连接好电路,经重复试验,线圈上的套环均未动。对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是(  )

图3
A.线圈接在了直流电源上
B.电源电压过高
C.所选线圈的匝数过多
D.所用套环的材料与老师的不同
解析:选D 金属套环跳起的原因是开关S闭合时,套环上产生的感应电流与通电线圈上的电流相互作用而引起的。无论实验用交流电还是直流电,闭合开关S瞬间,金属套环都会跳起。如果套环是塑料材料做的,则不能产生感应电流,也就不会受安培力作用而跳起。所以答案是D。21世纪教育网版权所有
4.(2014·北京丰台期末)如图4是一种焊接方法的原理示意图。将圆形待焊接金属工件放在线圈中,然后在线圈中通以某种电流,待焊接工件中会产生感应电流,感应电流在焊缝处产生大量的热量将焊缝两边的金属熔化,待焊工件就焊接在一起。我国生产的自行车车轮圈就是用这种办法焊接的。下列说法中正确的是(  )

图4
A.线圈中的电流是很强的恒定电流
B.线圈中的电流是交变电流,且频率很高
C.待焊工件焊缝处的接触电阻比非焊接部分电阻小
D.焊接工件中的感应电流方向与线圈中的电流方向总是相反
解析:选B 线圈中的电流是交变电流,且频率很高,选项B正确A错误;待焊工件焊缝处的接触电阻比非焊接部分电阻大,选项C错误;根据楞次定律,当线圈中的电流增大时,焊接工件中的感应电流方向与线圈中的电流方向相反;当线圈中的电流减小时,焊接工件中的感应电流方向与线圈中的电流方向相同,选项D错误。
5.如图5所示,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a(  )

图5
A.顺时针加速旋转
B.顺时针减速旋转
C.逆时针加速旋转
D.逆时针减速旋转
解析:选B 由楞次定律,欲使b中产生顺时针电流,则a环内磁场应向里减弱或向外增强,a环的旋转情况应该是顺时针减速或逆时针加速,由于b环又有收缩趋势,说明a环外部磁场向外,内部向里,故选B。
6.(2014·无锡检测)如图6所示,一个金属圆环水平放置在竖直向上的匀强磁场中,能使圆环中产生感应电流的做法是(  )

图6
A.使匀强磁场均匀减少
B.保持圆环水平并在磁场中上下移动
C.保持圆环水平并在磁场中左右移动
D.保持圆环水平并使圆环绕过圆心的竖直轴转动
解析:选A 根据闭合回路中磁通量变化产生感应电流这一条件,能使圆环中产生感应电流的做法是使匀强磁场均匀减少,选项A正确。
二、多项选择题
7.带电圆环绕圆心在圆环所在平面内旋转,在环的中心处有一闭合小线圈,小线圈和圆环在同一平面内,则(  )
A.只要圆环在转动,小线圈内就一定有感应电流
B.不管圆环怎样转动,小线圈内都没有感应电流
C.圆环做变速转动时,小线圈内一定有感应电流
D.圆环做匀速转动时,小线圈内没有感应电流
解析:选CD 带电圆环旋转时,与环形电流相当,若匀速旋转,电流恒定,周围磁场不变,穿过小线圈的磁通量不变,不产生感应电流,A错D对;若带电圆环变速转动,相当于电流变化,周围产生变化的磁场,穿过小线圈的磁通量变化,产生感应电流,B错C对。
8.(2014·淮安模拟)如图7所示,“U”形金属框架固定在水平面上,金属杆ab与框架间无摩擦,整个装置处于竖直方向的磁场中。若因磁场的变化,使杆ab向右运动,则磁感应强度(  )

图7
A.方向向下并减小     B.方向向下并增大
C.方向向上并增大   D.方向向上并减小
解析:选AD 因磁场变化,发生电磁感应现象,杆ab中有感应电流产生,而使杆ab受到磁场力的作用,并发生向右运动。ab向右运动,使得闭合回路中磁通量有增加的趋势,说明原磁场的磁通量必定减弱,即磁感应强度正在减小,与方向向上、向下无关。故A、D正确,B、C错误。
9.(2014·唐山摸底)如图8甲所示,水平放置的平行金属导轨连接一个平行板电容器C和电阻R,导体棒MN放在导轨上且接触良好,整个装置放于垂直导轨平面的磁场中,磁感应强度B的变化情况如图乙所示(图示磁感应强度方向为正),MN始终保持静止,则0~t2时间(  )

图8
A.电容器C的电荷量大小始终没变
B.电容器C的a板先带正电后带负电
C.MN所受安培力的大小始终没变
D.MN所受安培力的方向先向右后向左
解析:选AD 磁感应强度均匀变化,产生恒定电动势,电容器C的电荷量大小始终没变,选项A正确B错误;由于磁感应强度变化,MN所受安培力的大小变化,MN所受安培力的方向先向右后向左,选项C错误D正确。
10.(2014·泰州期末)如图9甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U型导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环与导线框cdef在同一平面内,当螺线管内的磁感应强度随时间按图乙所示规律变化时,下列选项中正确的是(  )

图9
A.在t1时刻,金属圆环L内的磁通量最大
B.在t2时刻,金属圆环L内的磁通量最大
C.在t1~t2时间内, 金属圆环L内有逆时针方向的感应电流
D.在t1~t2时间内,金属圆环L有收缩的趋势
解析:选BD 当螺线管内的磁感应强度随时间按图乙所示规律变化时,在导线框cdef内产生感应电动势和感应电流,在t1时刻,感应电流为零,金属圆环L内的磁通量为零,选项A错误;在t2时刻,感应电流最大,金属圆环L内的磁通量最大,选项B正确;由楞次定律,在t1~t2时间内,导线框cdef内产生逆时针方向感应电流,感应电流逐渐增大,金属圆环L内磁通量增大,根据楞次定律,金属圆环L内有顺时针方向的感应电流,选项C错误;在t1~t2时间内,金属圆环L有收缩的趋势,选项D正确。
三、非选择题
11.(2012·上海高考)为判断线圈绕向,可将灵敏电流计G与线圈L连接,如图10所示。已知线圈由a端开始绕至b端,当电流从电流计G左端流入时,指针向左偏转。

图10
(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转。俯视线圈,其绕向为________(填:“顺时针”或“逆时针”)。
(2)当条形磁铁从图中的虚线位置向右远离L时,指针向右偏转。俯视线圈,其绕向为________(填:“顺时针”或“逆时针”)。
解析:(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转,说明L中电流从b到a。根据楞次定律,L中应该产生竖直向上的磁场。由安培定则可知,俯视线圈,电流为逆时针方向,线圈其绕向为顺时针。
(2)当条形磁铁从图中的虚线位置向右远离L时,指针向右偏转,说明L中电流从a到b。根据楞次定律,L中应该产生竖直向上的磁场。由安培定则可知,俯视线圈,电流为逆时针方向,俯视线圈,其绕向为逆时针。
答案:(1)顺时针 (2)逆时针
12.磁感应强度为B的匀强磁场仅存在于边长为2l的正方形范围内,有一个电阻为R、边长为l的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图11所示,从ab进入磁场时开始计时,到线框离开磁场为止。

图11
(1)画出穿过线框的磁通量随时间变化的图像;
(2)判断线框中有无感应电流。若有,答出感应电流的方向。
解析:(1)进入磁场的过程中磁通量均匀地增加,完全进入以后磁通量不变,之后磁通量均匀减小,如图所示。

(2)线框进入磁场阶段,磁通量增加,由楞次定律得电流方向为逆时针方向;线框在磁场中运动阶段,磁通量不变,无感应电流;线框离开磁场阶段,磁通量减小,由楞次定律得电流方向为顺时针方向。
答案:见解析


第2节法拉第电磁感应定律__自感和涡流



法拉第电磁感应定律
[想一想]
将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,如图9-2-1所示,感应电动势的大小与什么有关?感应电流的磁场方向与原磁场方向的关系怎样?

图9-2-1
提示:感应电动势的大小与线圈匝数和磁通量的变化快慢有关;感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”。
[记一记]
1.感应电动势
(1)定义:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n,其中n为线圈匝数。
[试一试]
1.穿过某线圈的磁通量随时间的变化的关系如图9-2-2所示,在线圈内产生感应电动势最大值的时间是(  )

图9-2-2
A.0~2 s     B.2~4 s
C.4~6 s     D.6~8 s
解析:选C Φ-t图像中,图像斜率越大,越大,感应电动势就越大。

导体切割磁感线时的感应电动势
[想一想] 
如图9-2-3所示,当导体棒在垂直于磁场的平面内,其一端为轴, 以角速度ω匀速转动时,产生的感应电动势为多少?

图9-2-3
提示:棒在时间t内转过的角度θ=ωt,
扫过的面积S=l·lθ=l2ωt,
对应的磁通量Φ=BS=Bl2ωt,
则棒产生的感应电动势E==Bl2ω。
另外:由E=Bl,又=ωl, 可得E=Bl2ω。
[记一记]
切割方式
电动势表达式
说明

垂直切割
E=Blv
①导体棒与磁场方向垂直
②磁场为匀强磁场

倾斜切割
E=Blvsin_θ其中θ为v与B的夹角


旋转切割(以一端为轴)
E=Bl2ω



[试一试]
2.如图9-2-4所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平速度v0抛出。设在整个过程中,棒的取向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是(  )

图9-2-4
A.越来越大       B.越来越小
C.保持不变       D.无法判断
解析:选C 金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=BLv可知,感应电动势也不变。C项正确。

自感 涡流
[想一想] 
如图9-2-5所示,开关S闭合且回路中电流达到稳定时,小灯泡A能正常发光,L为自感线圈,则当开关S闭合或断开时,小灯泡的亮暗变化情况是怎样的?

图9-2-5
提示:开关闭合时,自感电动势阻碍电流的增大,所以灯慢慢变亮;开关断开时,自感线圈的电流从有变为零,线圈将产生自感电动势,但由于线圈L与灯A不能构成闭合回路,所以灯立即熄灭。
[记一记]
1.互感现象
两个互相靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。
2.自感现象
(1)定义:由于通过导体自身的电流发生变化而产生的电磁感应现象。
(2)自感电动势:
①定义:在自感现象中产生的感应电动势。
②表达式:E=L。
③自感系数L:
相关因素:与线圈的大小、形状、圈数以及是否有铁芯有关。
单位:亨利(H),1 mH=10-3 H,1 μH=10-6 H。
3.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡,所以叫涡流。
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动。
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来。
交流感应电动机就是利用电磁驱动的原理工作的。
[试一试]
3.在图9-2-6所示的电路中,两个灵敏电流表G1和G2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;电流从“-”接线柱流入时,指针向左摆。在电路接通后再断开的瞬间,下列说法中符合实际情况的是(  )

图9-2-6
A.G1表指针向左摆,G2表指针向右摆
B.G1表指针向右摆,G2表指针向左摆
C.G1、G2表的指针都向左摆
D.G1、G2表的指针都向右摆
解析:选B 电路接通后线圈中电流方向向右,当电路断开时,线圈中电流减小,产生与原方向相同的自感电动势,与G2和电阻组成闭合回路,所以G1中电流方向向右,G2中电流方向向左,即G1指针向右摆,G2指针向左摆。B项正确。

考点一法拉第电磁感应定律的应用
1.感应电动势的大小由穿过电路的磁通量的变化率和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系。
2.法拉第电磁感应定律应用的三种情况:
(1)磁通量的变化是由面积变化引起时,ΔΦ=B·ΔS,则E=n;
(2)磁通量的变化是由磁场变化引起时,ΔΦ=ΔB·S,则E=n;
(3)磁通量的变化是由于面积和磁场变化共同引起的,则根据定义求,ΔΦ=Φ末-Φ初,E=n≠n。
3.在图像问题中磁通量的变化率是Φ-t图像上某点切线的斜率,利用斜率和线圈匝数可以确定感应电动势的大小。【版权所有:21教育】
[例1] 如图9-2-7甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示。图线与横、纵轴的截距分别为t0和B0,导线的电阻不计。求0至t1时间内

图9-2-7
(1)通过电阻R1上的电流大小和方向;
(2)通过电阻R1上的电荷量q及电阻R1上产生的热量。
[思维流程] 

[解析] (1)根据楞次定律可知,通过R1的电流方向为由b到a。
根据法拉第电磁感应定律得线圈中的电动势为
E=n=
根据闭合电路欧姆定律得通过R1的电流为
I==。
(2)通过R1的电荷量q=It1=,
R1上产生的热量Q=I2R1t1=。
[答案] (1) 方向由b到a
(2) 

应用电磁感应定律应注意的三个问题
(1)公式E=n求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值。
(2)利用公式E=nS求感应电动势时,S为线圈在磁场范围内的有效面积。
(3)通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关。推导如下:q=Δt=Δt=。

1.(2014·泰州质检)如图9-2-8甲所示,一个圆形线圈的匝数n=100,线圈面积S=200 cm2,线圈的电阻r=1 Ω,线圈外接一个阻值R=4 Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。下列说法中正确的是(  )

图9-2-8
A.线圈中的感应电流方向为顺时针方向
B.电阻R两端的电压随时间均匀增大
C.线圈电阻r消耗的功率为4×10-4 W
D.前4 s内通过R的电荷量为4×10-4 C
解析:选C 由楞次定律,线圈中的感应电流方向为逆时针方向,选项A错误;由法拉第电磁感应定律,产生的感应电动势恒定为E=nSΔB/Δt=0.1 V,电阻R两端的电压不随时间变化,选项B错误;回路中电流I=E/(R+r)=0.02 A,线圈电阻r消耗的功率为P=I2r=4×10-4 W,选项C正确;前4 s内通过R的电荷量为q=It=0.08 C,选项D错误。
考点二导体切割磁感线产生感应电动势
1.导体平动切割磁感线
对于导体平动切割磁感线产生感应电动势的计算式E=Blv,应从以下几个方面理解和掌握。
(1)正交性
本公式是在一定条件下得出的,除了磁场是匀强磁场,还需B、l、v三者相互垂直。实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blvsin θ,θ为B与v方向间的夹角。
(2)平均性
导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即=Bl。
(3)瞬时性
若v为瞬时速度,则E为相应的瞬时感应电动势。
(4)有效性
公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度。图9-2-9中有效长度分别为:

图9-2-9
甲图:l=cdsin β(容易错算成l=absin β)。
乙图:沿v1方向运动时,l=MN;
沿v2方向运动时,l=0。
丙图:沿v1方向运动时,l=R;
沿v2方向运动时,l=0;
沿v3方向运动时,l=R。
(5)相对性
E=Blv中的速度v是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系。
2.导体转动切割磁感线

图9-2-10
当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E=Bl=Bl2ω,如图9-2-10所示。
[例2] (2013·天津高考)如图9-2-11所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(  )

图9-2-11
A.Q1>Q2,q1=q2      B.Q1>Q2,q1>q2
C.Q1=Q2,q1=q2   D.Q1=Q2,q1>q2
[思路点拨]
(1)两次进入磁场过程中产生的电动势和电流是否相同?大小有什么关系?
提示:都不同。根据E=BLv和I=,可知ab边平行MN进入磁场过程中产生的电动势大,电流大。
(2)线圈进入磁场过程中,产生的电量与什么有关?
提示:与磁通量的变化量有关。
[解析] 选A 由Q=I2Rt得,Q1=2Rt=×=,Q2=2Rt=×=,又因为Lab>Lbc,故Q1>Q2。由电荷量q=Δt=n=,故q1=q2。所以A正确。

2.(2013·北京高考)如图9-2-12所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E1∶E2分别为(  )

图9-2-12
A.c→a,2∶1   B.a→c,2∶1
C.a→c,1∶2   D.c→a,1∶2
解析:选C 金属棒MN向右切割磁感线,产生感应电动势,由安培定则可知,电阻中电流方向为a→c。E1=BLv,E2=2BLv,所以E1∶E2=1∶2。综上所述,C正确。
考点三通电自感与断电自感的比较
[例3] (2011·北京高考)某同学为了验证断电自感现象,自己找来带铁芯的线圈L、小灯泡A、开关S和电池组E,用导线将它们连接成如图9-2-13所示的电路。检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是(  )【出处:21教育名师】

图9-2-13
A.电源的内阻较大   B.小灯泡电阻偏大
C.线圈电阻偏大   D.线圈的自感系数较大
[解析] 选C 闭合开关S,电路稳定灯泡正常发光时,如果电感线圈L中的电阻比灯泡的电阻大,则电感线圈L中的电流IL比灯泡A中的电流IA小,当开关S断开,则由于自感现象,L和A 构成回路使L和A 中的电流从IL开始减小,因此不可能看到小灯泡闪亮的现象,C项正确。
[例4] (2014·南通调研)如图9-2-14所示,A、B、C是3个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计)。则(  )

图9-2-14
A.S闭合时,A灯立即亮,然后逐渐熄灭
B.S闭合时,B灯立即亮,然后逐渐熄灭
C.电路接通稳定后,3个灯亮度相同
D.电路接通稳定后,S断开时,C灯立即熄灭
[解析] 选A 因线圈L的自感系数较大且直流电阻可忽略不计,S闭合时,A灯立即亮,然后逐渐熄灭,A正确。S闭合时,B灯先不太亮,然后变亮,B错误。电路接通稳定后,B、C灯亮度相同,A灯不亮,C错误。电路接通稳定后,S断开时,C灯逐渐熄灭,D错误。



以“刷卡器”为背景考查电磁感应问题
[典例] (2013·浙江高考)磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈。当以速度v0刷卡时,在线圈中产生感应电动势,其E-t关系如图9-2-15所示。如果只将刷卡速度改为,线圈中的E-t关系图可能是(  )

图9-2-15

图9-2-16
[解析] 本题考查电磁感应,意在考查考生对电磁感应的理解和应用能力。若将刷卡速度改为,线圈切割磁感线
运动时产生的感应电动势大小将会减半,周期将会加倍,故D项正确,其他选项错误。
[答案] D
[点悟] 
生活中电磁感应问题
“刷卡器”在商场、银行等场所随处可见,本题以“刷卡器”为背景材料,主要考查感应电动势大小与速度的关系,试题表面看似“深奥”,实际上只是考查感应电动势随速度、时间的变化规律,题目设问简单,难度较小。
此类问题历年高考命题统计
高考题
试题背景
考查点

2011·重庆卷T23
可测速跑步机
电磁感应定律和功能关系

2012·浙江卷T25
自行车闪烁装置
电磁感应、楞次定律及串、并联电路知识


此类问题经常以选择题或计算题的形式考查,试题情景新颖,叙述篇幅较长,但试题设问落点较低,只要认真读题,建立好对应的物理模型,对于计算题,要得高分也是不太困难的。

3.(2014·昆山测试)“超导量子干涉仪”可用于探测心磁(10-10T)和脑磁(10-13T)等微弱磁场,其灵敏度可达10-14T,其探测“回路”示意图如图9-2-17甲所示。穿过ABCD“回路”的磁通量为Φ,总电流强度I=i1+i2。I与的关系如图乙所示(Φ0=2.07×10-15Wb),下列说法正确的是(  )

图9-2-17
A.图乙中横坐标的单位是Wb
B.穿过“回路”的磁通量越大,电流I越大
C.穿过“回路”的磁通量变化引发电流I周期性变化
D.根据电流I的大小,可以确定穿过“回路”的磁通量大小
解析:选C 图乙中横坐标是,无单位,选项A错误;穿过“回路”的磁通量变化引发电流I周期性变化,选项C正确B错误;根据电流I的大小,不可能确定穿过“回路”的磁通量大小,选项D错误。




1.模型特点
“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们复习中的难点。“杆+导轨”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂形式多变。
2.模型分类
(1)单杆水平式
物理模型
匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计


动态分析
设运动过程中某时刻棒的速度为v,由牛顿第二定律知棒ab的加速度为a=-,a、v同向,随速度的增加,棒的加速度a减小,当a=0时,v最大,I=恒定

收尾状态
运动形式
匀速直线运动


力学特征
a=0 v恒定不变


电学特征
I恒定

(2)单杆倾斜式
物理模型
匀强磁场与导轨垂直,磁感应强度为B,导轨间距L,导体棒质量m,电阻R,导轨光滑,电阻不计


动态分析
棒ab释放后下滑,此时a=gsin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsin α时,a=0,v最大

收尾状态
运动形式
匀速直线运动


力学特征
a=0 v最大 vm=


电学特征
I恒定


[典例] (2013·新课标全国卷Ⅰ)如图9-2-18所示,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求:

图9-2-18
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
[解析] (1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv   ①
平行板电容器两极板之间的电势差为U=E        ②
设此时电容器极板上积累的电荷量为Q,按定义有C=     ③
联立①②③式得Q=CBLv          ④
(2)设金属棒的速度大小为v时经历的时间为t,通过金属棒的电流为i。金属棒受到的磁场的作用力方向沿导轨向上,大小为f1=Bli         ⑤
设在时间间隔(t,t+Δt)内流经金属棒的电荷量为ΔQ,按定义有i=  ⑥
ΔQ也是平行板电容器两极板在时间间隔(t,t+Δt)内增加的电荷量。由④式得ΔQ=CBLΔv          ⑦
式中,Δv为金属棒的速度变化量。按定义有a=      ⑧
金属棒所受到的摩擦力方向斜向上,大小为f2=μN      ⑨
式中,N是金属棒对于导轨的正压力的大小,有N=mgcos θ    ⑩
金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有
mgsin θ-f1-f2=ma          ?
联立⑤至?式得
a=g          ?
由?式及题设可知,金属棒做初速度为零的匀加速直线运动。t时刻金属棒的速度大小为
v=gt          ?
[答案] (1)Q=CBLv (2)v=gt
[题后悟道] 由于感应电流与导体切割磁感线运动的加速度有着相互制约的关系,故导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态。分析这一动态过程进而确定最终状态是解决这类问题的关键。21·世纪*教育网
分析电磁感应问题中导体运动状态的基本思路:


(2012·广东高考)如图9-2-19所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板,R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。

图9-2-19
(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v。
(2)改变Rx,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的Rx。
解析:(1)当Rx=R,棒沿导轨匀速下滑时,由平衡条件
Mgsin θ=F
安培力F=BIl
解得I=
感应电动势E=Blv
电流I=
解得v=
(2)微粒水平射入金属板间,能匀速通过,由平衡条件得
mg=q
棒沿导轨匀速下滑,由平衡条件Mgsin θ=BI1l
金属板间电压U=I1Rx
解得Rx=
答案:(1)  (2)


[随堂对点训练]
1.(多选) (2014·深圳南山期末)如图9-2-20,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。下面说法正确的是(  )2·1·c·n·j·y

图9-2-20
A.闭合开关S时,A、B灯同时亮,且达到正常
B.闭合开关S时,B灯比A灯先亮,最后一样亮
C.闭合开关S时,A灯比B灯先亮,最后一样亮
D.断开开关S时,A灯与B灯同时慢慢熄灭
解析:选BD 由于自感的作用,闭合开关S时,B灯比A灯先亮,最后一样亮,选项A、C错误B正确;断开开关S时,L中产生自感电动势,A灯与B灯同时慢慢熄灭,选项D正确。
2.粗细均匀的电阻丝围成图9-2-21所示的线框,置于正方形有界匀强磁场中,磁感应强度为B,方向垂直于线框平面,图中ab=bc=2cd=2de=2ef=2fa=2L。现使线框以同样大小的速度v匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过如图所示位置时,下列说法中正确的是(  )

图9-2-21
A.ab两点间的电势差图①中最大
B.ab两点间的电势差图②中最大
C.回路电流图③中最大
D.回路电流图④中最小
解析:选A 设ab段电阻为r,图①中ab两点间的电势差U=3Ir,图②中ab两点间的电势差U=Ir,图③中ab两点间的电势差U=Ir/2,图④中ab两点间的电势差U=Ir,所以ab两点间的电势差图①中最大,选项A正确B错误。回路电流图③中最小,其他回路电流相等,选项C、D错误。
3.(2014·武汉摸底)如图9-2-22所示,正方形线框的左半侧处在磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN恰与磁场边缘平齐。若第一次将线框从磁场中以恒定速度v1向右匀速拉出,第二次以线速度v2让线框绕轴MN匀速转过90°,为使两次操作过程中,线框产生的平均感应电动势相等,则(  )

图9-2-22
A.v1∶v2=2∶π      B.v1∶v2=π∶2
C.v1∶v2=1∶2   D.v1∶v2=2∶1
解析:选A 第一次将线框从磁场中以恒定速度v1向右匀速拉出,线框中的感应电动势恒定,有1=E1=BLv1。第二次以线速度v2让线框绕轴MN匀速转过90°,所需时间t==,线框中的磁通量变化量ΔΦ=B·L·L/2=BL2,产生的平均电动势2==。由题意知1=2,可得v1∶v2=2∶π,A正确。www-2-1-cnjy-com
4.(多选)如图9-2-23所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴。一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时(  )

图9-2-23
A.穿过回路的磁通量为零
B.回路中感应电动势大小为2Blv0
C.回路中感应电流的方向为顺时针方向
D.回路中ab 边与cd边所受安培力方向相同
解析:选ABD 由题意知,穿过闭合回路的磁通量Φ=0,A正确。由右手定则判知ab边与cd边切割磁感线产生的感应电动势相当于两个电源串联,回路中的感应电动势E=Blabv0+Blcdv0=2Blv0,B正确。由右手定则可知感应电流的方向为逆时针方向,C错误。由左手定则可知ab边与cd边所受的安培力方向均向左,D正确。
5.(多选)如图9-2-24所示,匀强磁场的方向垂直于电路所在平面,导体棒ab与电路接触良好。当导体棒ab在外力F作用下从左向右做匀加速直线运动时,若不计摩擦和导线的电阻,整个过程中,灯泡L未被烧毁,电容器C未被击穿,则该过程中(  )

图9-2-24
A.感应电动势将变大
B.灯泡L的亮度变大
C.电容器C的上极板带负电
D.电容器两极板间的电场强度将减小
解析:选AB 当导体棒ab在外力F作用下从左向右做匀加速直线运动时,由右手定则知,导体棒a端的电势高,电容器C的上极板带正电;由公式E=BLv知,感应电动势将变大,导体棒两端的电压变大,灯泡L的亮度变大,由于场强E=电容器两极板间的电场强度将变大。故A、B正确,C、D错。21cnjy.com
6.如图9-2-25所示,金属杆ab放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l1=0.8 m,宽l2=0.5 m,回路总电阻R=0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M=0.04  kg的木块,磁感应强度从B0=1 T开始随时间均匀增加,5 s末木块将离开水平面,不计一切摩擦,g取10 m/s2,求回路中的电流强度。

图9-2-25
解析:设磁感应强度B(t)=B0+kt,k是大于零的常量,
于是回路电动势E==kS
S=l1×l2
回路电流I=
杆受安培力
F(t)=BIl2=(B0+kt)Il2
5秒末有
F(5 s)==Mg
可以得到k=0.2 T/s或k=-0.4 T/s(舍去),
解得I=0.4 A。
答案:0.4 A
[课时跟踪检测]
一、单项选择题
1.如图1所示,电源的电动势为E,内阻r不能忽略。A、B是两个相同的小灯泡,L是一个自感系数相当大的线圈。关于这个电路的以下说法正确的是(  )

图1
A.开关闭合到电路中电流稳定的时间内, A灯立刻亮,而后逐渐变暗,最后亮度稳定
B.开关闭合到电路中电流稳定的时间内,B灯立刻亮,而后逐渐变暗,最后亮度稳定
C.开关由闭合到断开瞬间,A灯闪亮一下再熄灭
D.开关由闭合到断开瞬间,电流自左向右通过A灯
解析:选A 开关闭合到电路中电流稳定的时间内,A灯立刻亮,而后逐渐变暗,最后亮度稳定;B灯逐渐变亮,最后亮度稳定,选项A正确B错误。开关由闭合到断开瞬间,电流自右向左通过A灯,A灯没有闪亮一下再熄灭,选项C、D错误。
2.(2014·南京模拟)如图2所示,长为L的金属导线弯成一圆环,导线的两端接在电容为C的平行板电容器上,P、Q为电容器的两个极板,磁场垂直于环面向里,磁感应强度以B=B0+Kt(K>0)随时间变化,t=0时,P、Q两极板电势相等。两极板间的距离远小于环的半径,经时间t电容器P板(  )

图2
A.不带电   B.所带电荷量与t成正比
C.带正电,电荷量是   D.带负电,电荷量是
解析:选D 磁感应强度以B=B0+Kt(K>0)随时间变化,由法拉第电磁感应定律得E==S=KS,而S=,经时间t电容器P板所带电荷量Q=EC=;由楞次定律知电容器P板带负电,故D选项正确。
3.(2014·温州八校联考)如图4所示的四个选项中,虚线上方空间都存在方向垂直纸面向里的匀强磁场。A、B中的导线框为正方形,C、D中的导线框为直角扇形。各导线框均绕垂直纸面轴O在纸面内匀速转动,转动方向如箭头所示,转动周期均为T。从线框处于图示位置时开始计时,以在OP边上从P点指向O点的方向为感应电流i的正方向。则在如图4所示的四个情景中,产生的感应电流i随时间t的变化规律如图3所示的是(  )

图3

图4
解析:选C 根据感应电流在一段时间恒定,导线框应为扇形;由右手定则可判断出产生的感应电流i随时间t的变化规律如图3所示的是C。
4.光滑曲面与竖直平面的交线是抛物线,如图5所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是(  )

图5
A.mgb   B.mv2
C.mg(b-a)   D.mg(b-a)+mv2
解析:选D 金属块在进出磁场过程中要产生感应电流,机械能要减少,上升的最大高度不断降低,最后刚好飞不出磁场,就往复运动永不停止,由能量守恒可得Q=ΔE=mv2+mg(b-a)。
5.(2014·济南外国语学校测试)如图6所示,正方形闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场。若第一次用0.3 s时间拉出,外力所做的功为W1;第二次用0.9 s时间拉出,外力所做的功为W2,则(  )

图6
A.W1=W2   B.W1=W2
C.W1=3W2   D.W1=9W2
解析:选C 设正方形边长为L,导线框的电阻为R,则导体切割磁感线的边长为L,运动距离为L,W=t=·==,可知W与t成反比,W1=3W2。选C。
6. (2012·新课标全国卷)如图7所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为(  )

图7
A.   B.
C.   D.
解析:选C 设圆的半径为r,当其绕过圆心O的轴匀速转动时,圆弧部分不切割磁感线,不产生感应电动势,而在转过半周的过程中仅有一半直径在磁场中,产生的感应电动势为E=B0r=B0r·=B0r2ω;当线框不动时:E′=·。由闭合电路欧姆定律得I=,要使I=I′必须使E=E′,可得C正确。
二、多项选择题
7.(2014·怀化检测)如图8,在水平桌面上放置两条相距为l的平行光滑导轨ab与cd,阻值为R的电阻与导轨的a、c端相连。质量为m、电阻也为R的导体棒垂直于导轨放置并可沿导轨自由滑动。整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B。导体棒的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m的物块相连,绳处于拉直状态。现若从静止开始释放物块,用h表示物块下落的高度(物块不会触地),g表示重力加速度,其他电阻不计,则(  )

图8
A.电阻R中的感应电流方向由c到a
B.物块下落的最大加速度为g
C.若h足够大,物块下落的最大速度为
D.通过电阻R的电荷量为
解析:选AC 由右手定则可知,电阻R中的感应电流方向由c到a,A正确;物块刚下落时加速度最大,由牛顿第二定律有2ma0=mg,最大加速度:a0=,B错误;对导体棒与物块m,当所受的安培力与物块m的重力平衡时,达到最大速度,即=mg,所以vm=,C正确;通过电阻R的电荷量:q==,D错误。
8.(2014·青岛二中测试)如图9所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时开关S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图像可能正确的是(  )

图9

图10
解析:选ACD 若ab杆速度为v时,S闭合,则ab杆中产生的感应电动势E=BLv,ab杆受到的安培力F=,如果安培力等于ab杆的重力,则ab杆匀速运动,A项正确;如果安培力小于ab杆的重力,则ab杆先加速最后匀速,C项正确;如果安培力大于ab杆的重力,则ab杆先减速最后匀速,D项正确;ab杆不可能匀加速运动,B项错。
9. (2014·汕头质检)如图11所示,圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路。若将滑动变阻器的滑片P向下滑动,下列表述正确的是(  )

图11
A.线圈a中将产生俯视逆时针方向的感应电流
B.穿过线圈a的磁通量变小
C.线圈a有扩张的趋势
D.线圈a对水平桌面的压力FN将增大
解析:选AD 通过螺线管b的电流方向如图所示,根据右手螺旋定则判断出螺线管b所产生的磁场方向竖直向下,滑片P向下滑动,接入电路的电阻减小,电流增大,所产生的磁场的磁感应强度增强,根据楞次定律,a线圈中所产生的感应电流产生的感应磁场方向竖直向上,再由右手螺旋定则可得线圈a中的电流方向为俯视逆时针方向,故A正确;由于线圈b中的电流增大,产生的磁场增强,导致穿过线圈a的磁通量变大,故B错误;根据楞次定律,线圈a将阻碍磁通量的增大,因此,线圈a缩小,线圈a对水平桌面的压力增大,C选项错误,D选项正确。
10.半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B。杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图12所示。则(  )

图12
A.θ=0时,杆产生的电动势为2Bav
B.θ=时,杆产生的电动势为Bav
C.θ=0时,杆受的安培力大小为
D.θ=时,杆受的安培力大小为
解析:选AD 根据法拉第电磁感应定律可得E=Blv(其中l为有效长度),当θ=0时,l=2a,则E=2Bav;当θ=时,l=a,则E=Bav,故A选项正确,B选项错误。根据通电直导线在磁场中所受安培力的大小的计算公式可得F=BIl,又根据闭合电路欧姆定律可得I=,当θ=0时,r+R=(π+2)aR0,解得F=;当θ=时,r+R=(+1)aR0,解得F=,故C选项错误,D选项正确。
三、非选择题
11.(2014·万州区模拟)如图13甲所示,光滑导轨宽0.4 m,ab为金属棒,均匀变化的磁场垂直穿过轨道平面,磁场的变化情况如图乙所示,金属棒ab的电阻为1 Ω,导轨电阻不计。t=0时刻,ab棒从导轨最左端,以v=1 m/s的速度向右匀速运动,求1 s末回路中的感应电流及金属棒ab受到的安培力。

图13
解析:Φ的变化有两个原因,一是B的变化,二是面积S的变化,显然这两个因素都应当考虑在内,所以有
E==S+Blv
又=2 T/s,
在1 s末,B=2 T,S=lvt=0.4×1×1 m2=0.4 m2
所以1 s末,E=S+Blv=1.6 V,
此时回路中的电流
I==1.6 A
根据楞次定律与右手定则可判断出电流方向为逆时针方向
金属棒ab受到的安培力为F=BIl=2×1.6×0.4 N=1.28 N,方向向左。
答案:1.6 A 1.28 N,方向向左
12.(2014·苏南六市模拟)如图14所示,光滑导轨MN和PQ固定在同一水平面上,两导轨距离为L,两端分别接有阻值均为R的定值电阻R1和R2,两导轨间有一边长为的正方形区域abcd,该区域内有方向竖直向下的匀强磁场,磁感应强度为B。一质量为m的金属杆与导轨接触良好并静止于ab处,现用一恒力F沿水平方向拉杆,使之由静止向右运动,若杆出磁场前已做匀速运动,不计导轨及金属杆的电阻。求:

图14
(1)金属杆出磁场前的瞬间流过R1的电流大小和方向;
(2)金属杆做匀速运动时的速率;
(3)金属杆穿过整个磁场过程中R1上产生的电热。
解析:(1)设流过金属杆中的电流为I,由平衡条件得:
F=BI·
解得I=
因R1=R2,所以流过R1的电流大小为I1==
根据右手定则判断可知,流过R1的电流方向为从M到P。
(2)设杆做匀速运动的速度为v,由法拉第电磁感应定律得:
杆切割磁感线产生的感应电动势大小为 E=Bv·
又根据闭合欧姆定律得到E=I·,
可解得v=
(3)设整个过程电路中产生的总电热为Q,根据能量守恒定律得:
Q=F·-mv2
代入v可得Q=FL-
所以Q1=Q=FL-。
答案:(1)金属杆出磁场前的瞬间流过R1电流大小为,方向从M到P;(2)金属杆做匀速运动时的速率是;(3)金属杆穿过整个磁场过程中R1上产生的电热是FL-。

第3节电磁感应定律的综合应用



电磁感应中的电路问题
[想一想]
用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图9-3-1所示。在磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是多少?

图9-3-1
提示:由E===10×0.02 V=0.2 V,由楞次定律及电路知识可知Uab=-=-0.1 V
[记一记]
1.电源和电阻

2.电流方向

[试一试]
1.如图9-3-2所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B,方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。一根与导轨接触良好、有效阻值为的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,则(不计导轨电阻)(  )

图9-3-2
A.通过电阻R的电流方向为P→R→M
B.a、b两点间的电压为BLv
C.a端电势比b端高
D.外力F做的功等于电阻R上发出的焦耳热
解析:选C 由右手定则可知通过金属导线的电流由b到a,即通过电阻R的电流方向为M→R→P,A错误;金属导线产生的电动势为BLv,而a、b两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a、b两点间电压为BLv,B错误;金属导线可等效为电源,在电源内部,电流从低电势流向高电势,所以a端电势高于b端电势,C正确;根据能量守恒定律可知,外力做功等于电阻R和金属导线产生的焦耳热之和,D错误。

电磁感应中的图像问题
[记一记]
图像类型
(1)随时间t变化的图像,如B-t图像、Φ-t图像、E-t图像和I-t图像
(2)随位移x变化的图像,如E-x图像和I-x图像

问题类型
(1)由给定的电磁感应过程判断或画出正确的图像
(2)由给定的有关图像分析电磁感应过程,求解相应的物理量(用图像)

应用知识
左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律、函数图像等知识


[试一试]
2.(2013·常州模拟)如图9-3-3所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc的ab边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab边垂直。则下列各图中哪一个可以定性地表示线框在通过磁场的过程中感应电流随时间变化的规律(  )2-1-c-n-j-y

图9-3-3

图9-3-4
解析:选D 开始时进入磁场切割磁感线,根据右手定则可知,电流方向为逆时针,当开始出磁场时,回路中磁通量减小,产生的感应电流为顺时针;不论进入磁场,还是出磁场时,由于切割的有效长度变小,导致产生感应电流大小变小,故A、B、C错误,D正确。

电磁感应中的力学综合问题

[记一记]
1.安培力的大小
 ?F=
2.安培力的方向
(1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。
(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。
[试一试]
3. (2014· 东北师范大学附属中学测试)如图9-3-5所示,在半径为R的半圆形区域内,有磁感应强度为B的垂直纸面向里的有界匀强磁场,PQM为圆内接三角形线圈,且PM为圆的直径,三角形线圈的各边由材料相同的细软弹性导线组成(不考虑导线中电流间的相互作用)。设线圈的总电阻为r,且不随形状改变,此时∠PMQ=37°,下列说法正确的是(  )

图9-3-5
A.穿过线圈PQM中的磁通量大小为Φ=0.96BR2
B.若磁场方向不变,只改变磁感应强度B的大小,且B=B0+kt,则此时线圈中产生的感应电流大小为I=
C.保持P、M两点位置不变,将Q点沿圆弧顺时针移动到接近M点的过程中,线圈中有感应电流且电流方向不变
D.保持P、M两点位置不变,将Q点沿圆弧顺时针移动到接近M点的过程中,线圈中不会产生焦耳热
解析:选A 由几何关系知PQ=1.2R,QM=1.6R,则三角形面积S=0.96R2,根据公式Φ=BS判断可知选项A正确;根据法拉第电磁感应定律E==·S,I=,联立解得I=,选项B错误;Q顺时针移动时,由几何关系知面积先增大后减小,则线圈中产生电流且方向有改变,选项C、D错误。


考点一电磁感应与电路知识的综合应用
电磁感应与电路知识的关系图
闭合电路          电磁感应

[例1] (2012·江苏高考)某兴趣小组设计了一种发电装置,如图9-3-6所示。在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为π,磁场均沿半径方向。匝数为N的矩形线圈abcd的边长ab=cd=l、bc=ad=2l。线圈以角速度ω绕中心轴匀速转动,bc和ad边同时进入磁场。在磁场中,两条边所经过处的磁感应强度大小均为B、方向始终与两边的运动方向垂直。线圈的总电阻为r,外接电阻为R。求:

图9-3-6
(1)线圈切割磁感线时,感应电动势的大小Em;
(2)线圈切割磁感线时,bc边所受安培力的大小F;
(3)外接电阻上电流的有效值I。
[思路点拨]
(1)线圈有哪些边切割磁感线?其切割磁感线的速度如何?
提示:线圈的bc、ad边切割磁感线产生感应电动势。bc、ad边切割磁感线的速度为v=ω·。
(2)线圈bc边中的电流方向、磁场方向、所受安培力方向三者存在怎样的关系?安培力如何计算?
提示:线圈bc边中的电流方向、磁场方向、所受安培力方向三者两两互相垂直,其安培力可以用F=BIl计算。
(3)外接电阻上电流的有效值等于最大值吗?
提示:一个周期内, 外接电阻上只有T的时间内有电流,故其有效值并不等于最大值,有效值应根据电流的热效应计算。
[解析] (1)bc、ad边的运动速度v=ω,感应电动势Em=4NBlv
解得Em=2NBl2ω。
(2)电流Im= ,安培力F=2NBIml
解得F=。
(3)一个周期内,通电时间t=T
R上消耗的电能W=IRt 且W=I2RT
解得I=
[答案] (1)2NBl2ω (2) (3)


解决电磁感应中的电路问题三步曲


1.(多选)(2013·四川高考)如图9-3-7所示,边长为L、不可形变的正方形导线框内有半径为r的圆形磁场区域,其磁感应强度B随时间t的变化关系为B= kt(常量k>0)。回路中滑动变阻器R的最大阻值为R0,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2=。闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势,则(  )

图9-3-7
A.R2两端的电压为
B.电容器的a极板带正电
C.滑动变阻器R的热功率为电阻R2的5倍
D.正方形导线框中的感应电动势为kL2
解析:选AC 根据(部分电路)欧姆定律和电路的串、并联知识可知,定值电阻R2两端的电压为U′=·=,故A选项正确;正方形导线框相当于电源,根据楞次定律可知,定值电阻R1的左端与电源的正极相连,则电容器的b极板带正电,故B选项错误;根据电路的串、并联知识和纯电阻的热功率的计算公式P=I2R可得,定值电阻R2的热功率为P=I02·(设流经定值电阻R2的电流为I0),滑动变阻器R的热功率为P′=I02·+(2I0)2·=5I02·=5P,即滑动变阻器R的热功率是定值电阻R2热功率的5倍,故C选项正确;根据法拉第电磁感应定律可得,正方形导线框中的感应电动势的大小为E=S=πr2k,故D选项错误。
考点二电磁感应中的图像问题
1.图像类型

2.分析方法

[例2] 如图9-3-8所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里。一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置。规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是(  )

图9-3-8

图9-3-9
[思路点拨] 导线框的运动过程分析:


[解析] 选B 解法1:线框由初始位置运动到(1)位置过程中,切割磁感线的导体有效长度均匀增大,电流也均匀变大,由右手定则判知电流沿逆时针方向。
线框由(1)位置运动到(2)位置过程中,切割磁感线的导体有效长度不变,电流大小不变,方向也不变。
线框由(2)位置运动到(3)位置过程中,左边有效切割长度ab逐渐减小,右边有效切割长度cd、ef逐渐增大,整体上,总电动势在减小,到达(3)位置时,E=0,即i=0。
线框由(3)位置运动到(4)位置过程中,有效切割长度变大,到达(4)位置时最大,由右手定则判知电流沿顺时针方向。
线框由(4)位置运动到(5)位置过程中,电流大小、方向均不变。
线框由(5)位置运动到(6)位置过程中,导体有效切割长度变小,直到为零。
综上所述,可知B正确。
解法2:在电磁感应现象中,流过线框某一横截面的电量与磁通量的变化量成正比,当线框穿入和穿出磁场之后,线框内的磁通量变化量为零,流过线框某一横截面的电量也必将为零。而在电流-时间图像中,图线与坐标轴围成的面积就是电量,所以电流图像在时间轴上下围成的面积必然相等。观察四个选项,符合条件的只有B和D。利用楞次定律判断t=0时刻后一段时间的电流方向可知B正确。

本类题型一直都是高考中的高频考点。常见的是正方形、长方形、圆形或三角形等形状的线框在各种各样边界的磁场中匀速通过。根据几何关系找等效切割长度是解题的关键。选择题往往可以使用排除法快速得到正确答案。

2.(2013·新课标全国卷Ⅱ)如图9-3-10,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。导线框以某一初速度向右运动。t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。下列v -t图像中,可能正确描述上述过程的是(  )

图9-3-10

图9-3-11
解析:选D 由于导线框闭合,导线框以某一初速度向右运动,其右侧边开始进入磁场时,切割磁感线产生感应电动势和感应电流,右侧边受到安培力作用,做减速运动;导线框完全进入磁场中时,导线框中磁通量不变,不产生感应电流,导线框不受安培力作用,做匀速运动;导线框右侧边开始出磁场时,左侧边切割磁感线产生感应电动势和感应电流,左侧边受到安培力作用,导线框做减速运动;导线框进、出磁场区域时,受到的安培力不断减小,导线框的加速度不断减小,所以可能正确描述导线框运动过程的速度图像是D。
考点三电磁感应中的动力学问题
1.两种状态及处理方法
状态
特征
处理方法

平衡态
加速度为零
根据平衡条件列式分析

非平衡态
加速度不为零
根据牛顿第二定律进行动态分析或结合功能关系进行分析


2.力学对象和电学对象的相互关系

3.动态分析的基本思路
―→―→―→
4.电磁感应中的动力学临界问题
(1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度求最大值或最小值的条件。
(2)两种常见类型
类型
“电—动—电”型
“动—电—动”型

示意图



已知量
棒ab长l、质量m、电阻R,导轨光滑水平,电阻不计
棒ab长l、质量m、电阻R,导轨光滑,电阻不计

过程分析
S闭合,棒ab受安培力F=,此时a=,棒ab速度v↑→感应电动势E=Blv↑→与电源电动势反接使电流I↓→安培力F=BIl↓→加速度a↓,当安培力F=0(a=0)时,v最大,最后匀速运动
棒ab释放后下滑,此时a=gsin α,棒ab速度v↑→感应电动势E=Blv↑→电流I=↑→安培力F=BIl↑→加速度a↓,当安培力F=mgsin α(a=0)时,v最大,最后匀速运动

[例3] 如图9-3-12所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内。在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场。电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环。已知小环以a=6  m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。不计导轨电阻和滑轮摩擦,绳不可伸长。取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。求

图9-3-12
(1)小环所受摩擦力的大小;
(2)Q杆所受拉力的瞬时功率。
[思路点拨]
(1)请判断导体杆Q中的电流方向。
提示:导体杆Q沿导轨向下匀速切割磁感线,由右手定则可以判断其电流方向由内向外。
(2)请画出该电路的等效电路图。

 



提示:

(3)请画出小环、导体杆K、导体杆K的受力分析图。


小环        导体杆K         导体杆K
提示:设流过K的电流为I


[解析] (1)以小环为研究对象,由牛顿第二定律m2g-Ff=m2a
代入数据得Ff=0.2 N
(2)设流过杆K的电流为I,由平衡条件得IlB1=FT=Ff
对杆Q,根据并联电路特点以及平衡条件得2IlB2=F+m1gsin θ
由法拉第电磁感应定律的推论得
E=B2lv
根据欧姆定律有2I=
且R总=+R
瞬时功率表达式为P=Fv
联立以上各式得P=2 W
[答案] (1)0.2 N (2)2 W

用“四步法”分析电磁感应中的动力学问题
解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:


3.(2013·安徽高考)如图9-3-13所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω。一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)21教育名师原创作品

图9-3-13
A.2.5 m/s 1 W        B.5 m/s 1 W
C.7.5 m/s 9 W              D.15 m/s 9 W
解析:选B 本题考查电与磁的综合应用,意在综合考查电磁感应、恒定电流、磁场、牛顿运动定律、能量的转化和守恒等知识点。小灯泡稳定发光时,导体棒MN的运动速度稳定,所受合力为零,在沿斜面方向上:mgsin 37°=μmgcos 37°+ILB,又I=,其中R总=2 Ω,代入数据可得v=5 m/s,闭合回路的总功率P==2 W,小灯泡和导体棒MN的电阻相等,消耗的电功率相等,都为1 W。
考点四电磁感应中的能量问题

1.能量转化及焦耳热的求法
(1)能量转化
电能
(2)求解焦耳热Q的三种方法

2.电能求解的三种主要思路
(1)利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功;
(2)利用能量守恒或功能关系求解;
(3)利用电路特征来求解:通过电路中所产生的电能来计算。
3.解题的一般步骤
(1)确定研究对象(导体棒或回路);
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;
(3)根据能量守恒定律列式求解。
[例4] (2012·天津高考)如图9-3-14所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻。一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T。棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动。当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。求:

图9-3-14
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF。
[思维流程] 
→

→

→

→

→

→
[解析] (1)设棒匀加速运动的时间为Δt,回路的磁通量变化量为ΔΦ,回路中的平均感应电动势为E,由法拉第电磁感应定律得E=       ①
其中ΔΦ=Blx         ②
设回路中的平均电流为I,由闭合电路的欧姆定律得I=   ③
则通过电阻R的电荷量为q=Iδt         ④
联立①②③④式,代入数据得q=4.5 C        ⑤
(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得
v2=2ax         ⑥
设棒在撤去外力后的运动过程中安培力做功为W,由动能定理得W=0-mv2⑦
撤去外力后回路中产生的焦耳热Q2=-W       ⑧
联立⑥⑦⑧式,代入数据得Q2=1.8 J         ⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得
Q1=3.6 J         
在棒运动的整个过程中,由功能关系可知,WF=Q1+Q2    ?
由⑨⑩?式得WF=3.6 J+1.8 J=5.4 J         ?
[答案] (1)4.5 C (2)1.8 J (3)5.4 J

4.(多选)(2014·苏州测试)在如图9-3-15所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到MN与JP的中间位置的过程中,线框的动能变化量为ΔEk,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有(  )【来源:21cnj*y.co*m】

图9-3-15
A.在下滑过程中,由于重力做正功,所以有v2>v1
B.从ab进入GH到MN与JP的中间位置的过程中,机械能守恒
C.从ab进入GH到MN与JP的中间位置的过程,有(W1-ΔEk)机械能转化为电能
D.从ab进入GH到MN与JP的中间位置的过程中,线框动能的变化量大小为ΔEk=W1-W2
解析:选CD 当线框的ab边进入GH后匀速运动到进入JP为止,ab进入JP后回路感应电动势增大,感应电流增大,因此所受安培力增大,安培力阻碍线框下滑,因此ab进入JP后开始做减速运动,使感应电动势和感应电流均减小,安培力又减小,当安培力减小到与重力沿斜面向下的分力mgsin θ相等时,以速度v2做匀速运动,因此v2<v1,A错;由于有安培力做功,机械能不守恒,B错;线框克服安培力做功,将机械能转化为电能,克服安培力做了多少功,就有多少机械能转化为电能,由动能定理得W1-W2=ΔEk,W2=W1-ΔEk,故C、D正确。







(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;
(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差Uab随时间t变化的Uab-t图像;
(4)若选择的是“1.5 V、0.3 A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价。

第一步:审题干,抓关键信息
关键点
获取信息

①
产生的电动势不是连续的,是时断时续的

②
金属外圈导电,可以作为连接电路的导线

③
辐条是绝缘的,不产生感应电动势

④
金属条周期性的产生感应电动势

⑤
金属条转动切割磁感线,产生电动势


第二步:审设问,找问题的突破口

第三步:三定位,将解题过程步骤化

第四步:求规范,步骤严谨不失分
[解] (1)金属条ab在磁场中切割磁感线时,所构成的回路的磁通量变化。设经过时间Δt,磁通量变化量为ΔΦ,由法拉第电磁感应定律
E=         ①(1分)
ΔΦ=BΔS=B(r22Δθ-r12Δθ)         ②(2分)
由①②式并代入数值得
E==Bω(r22-r12)=4.9×10-2 V         ③(1分)
根据右手定则(或楞次定律),可得感应电流方向为b→a。    ④(1分)
(2)通过分析,可得电路图为如图9-3-17所示。

图9-3-17
         (3分)
(3)设电路中的总电阻为R总,根据电路图可知,
R总=R+R=R         ⑤(2分)
ab两端电势差
Uab=E-IR=E-R=E≈1.2×10-2 V        ⑥(2分)
设ab离开磁场区域的时刻为t1,下一根金属条进入磁场区域的时刻为t2,
t1== s         ⑦
t2== s         ⑧
设轮子转一圈的时间为T,
T==1 s         ⑨(2分)
由T=1 s,金属条有四次进出,后三次与第一次相同。     ⑩
由⑥⑦⑧⑨⑩可画出如下Uab-t图像。(3分)

图9-3-18
         (1分)
(4)“闪烁”装置不能正常工作。(金属条的感应电动势只有4.9×10-2 V),远小于小灯泡的额定电压,因此无法工作。
B增大,E增大,但有限度;
r2增大,E增大,但有限度;
ω增大,E增大,但有限度;
θ增大,E不变。(4分)
————[学生易犯错误]—————————————————————————
(1)在②中,学生误认为ΔS=r22·Δ θ而造成失分。
(2)因不明确灯泡的连接方式画不出或画错电路图而失分。
(3)在⑥中误认为ab两端的电压为ab上小灯泡两端的电压而失分。

——————————————————————————————————————
[名师叮嘱]
(1)电阻的串并联关系不能只看连线,还要看电流方向,本例中四个灯泡的连接方式没有变化,但是各种情况的串并联关系并不相同。
(2)本题看似较难,其实所用知识很简单,情景也不复杂,只要分析清楚电路结构结合电磁感应知识即可求解。

[随堂对点训练]
1.如图9-3-19所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B。电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时(  )

图9-3-19
A.电容器两端的电压为零
B.电阻两端的电压为BLv
C.电容器所带电荷量为CBLv
D.为保持MN匀速运动,需对其施加的拉力大小为
解析:选C 当导线MN匀速向右运动时,导线MN产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U=E=BLv,所带电荷量Q=CU=CBLv,故A、B错,C对;MN匀速运动时,因无电流而不受安培力, 故拉力为零,D错。
2.(多选)(2013·泰州模拟)如图9-3-20所示,间距为L、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m、电阻也为R的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B的匀强磁场中。现使金属棒以初速度v沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q。下列说法正确的是(  )

图9-3-20
A.金属棒在导轨上做匀减速运动
B.整个过程中金属棒克服安培力做功为mv2
C.整个过程中金属棒在导轨上发生的位移为
D.整个过程中电阻R上产生的焦耳热为mv2
解析:选BC 金属棒在整个运动过程中,受到竖直向下的重力,竖直向上的支持力,这两个力合力为零,受到水平向左的安培力,金属棒受到的合力为安培力;金属棒受到的安培力F=BIL=BL·=BL·=,金属棒受到安培力作用而做减速运动,速度v不断减小,安培力不断减小,加速度不断减小,故金属棒做加速度逐渐减小的变减速运动,故A错误;整个过程中由动能定理可得:-W安=0-mv2,金属棒克服安培力做功为W安=mv2,故B正确;整个过程中感应电荷量q=IΔt=·Δt,又E==,联立得q=,故金属棒的位移s=,故C正确;克服安培力做功把金属棒的动能转化为焦耳热,由于金属棒电阻与电阻串联在电路中,且阻值相等,则电阻R上产生的焦耳热Q=W安=mv2,故D错误。
3.(2014·济南外国语学校测试)如图9-3-21所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向内的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一条直线上。若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i随时间t变化的图像是下图所示的(  )

图9-3-21

图9-3-22
解析:选C 根据楞次定律,在进磁场的过程中,感应电流的方向为逆时针方向,切割的有效长度线性增大,排除选项A、B;在出磁场的过程中,感应电流的方向为顺时针方向,切割的有效长度线性减小,排除D。故选项C正确。
4.如图9-3-23所示,在粗糙绝缘水平面上有一正方形闭合线框abcd,其边长为l,质量为m,金属线框与水平面的动摩擦因数为μ。虚线框a′b′c′d′内有一匀强磁场,磁场方向竖直向下。开始时金属线框的ab边与磁场的d′c′边重合。现使金属线框以初速度v0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc边与磁场区域的d′c′边距离为l。在这个过程中,金属线框产生的焦耳热为(  )

图9-3-23
A.mv02+μmgl       B.mv02-μmgl
C.mv02+2μmgl   D.mv02-2μmgl
解析:选D 依题意知,金属线框移动的位移大小为2l,此过程中克服摩擦力做功为2μmgl,由能量守恒定律得金属线框中产生的焦耳热为Q=mv02-2μmgl,故选项D正确。
5.如图9-3-24所示,水平面上固定一个间距L=1 m的光滑平行金属导轨,整个导轨处在竖直方向的磁感应强度B=1 T的匀强磁场中,导轨一端接阻值R=9 Ω的电阻。导轨上有质量m=1 kg、电阻r=1 Ω 、长度也为1 m的导体棒,在外力的作用下从t=0开始沿平行导轨方向运动,其速度随时间的变化规律是v=2,不计导轨电阻。求:

图9-3-24
(1)t=4 s时导体棒受到的安培力的大小;
(2)请在如图9-3-25所示的坐标系中画出电流平方与时间的关系(I2-t)图像。

图9-3-25
解析:(1)4 s时导体棒的速度是v=2=4 m/s
感应电动势E=BLv
感应电流I=
此时导体棒受到的安培力 F安=BIL=0.4 N
(2)由(1)可得
I2=()2=4()2t=0.04t
作出图像如图所示。

答案:(1)0.4 N (2)见解析
[课时跟踪检测]
一、单项选择题
1.(2014·北京东城检测)如图1所示,两根足够长的光滑金属导轨MN、PQ平行放置,导轨平面与水平面的夹角为θ,导轨的下端接有电阻。当导轨所在空间没有磁场时,使导体棒ab以平行导轨平面的初速度v0冲上导轨平面,ab上升的最大高度为H;当导轨所在空间存在方向与导轨平面垂直的匀强磁场时,再次使ab以相同的初速度从同一位置冲上导轨平面,ab上升的最大高度为h。两次运动中ab始终与两导轨垂直且接触良好。关于上述情景,下列说法中正确的是(  )

图1
A.两次上升的最大高度比较,有H=h
B.两次上升的最大高度比较,有H<h
C.无磁场时,导轨下端的电阻中有电热产生
D.有磁场时,导轨下端的电阻中有电热产生
解析:选D 没有磁场时,只有重力做功,机械能守恒,没有电热产生,C错误。有磁场时,ab切割磁感线,重力和安培力均做负功,机械能减小,有电热产生,故ab上升的最大高度变小,A、B错误,D正确。
2.边长为a的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直框架平面向里的匀强磁场中。现把框架匀速水平向右拉出磁场,如图2所示,则下列图像与这一过程相符合的是(  )

图2

图3
解析:选B 该过程中,框架切割磁感线的有效长度等于框架与磁场右边界两交点的间距,根据几何关系有l有=x,所以E电动势=Bl有v=Bvx∝x,选项A错误,B正确;F外力==∝x2,选项C错误;P外力功率=F外力v∝F外力∝x2,选项D错误。
3.(2014·江南十校联考)如图4所示,将一根绝缘硬金属导线弯曲成一个完整的正弦曲线形状,它通过两个小金属环与长直金属杆导通,图中a、b间距离为L,导线组成的正弦图形顶部或底部到杆的距离都是d。右边虚线范围内存在磁感应强度大小为B、方向垂直于弯曲导线所在平面向里的匀强磁场,磁场区域的宽度为。现在外力作用下导线沿杆以恒定的速度v向右运动,t=0时刻a环刚从O点进入磁场区域。则下列说法正确的是(  )

图4
A.t=时刻,回路中的感应电动势为Bdv
B.t=时刻,回路中的感应电动势为2Bdv
C.t=时刻,回路中的感应电流第一次开始改变方向
D.t=时刻,回路中的感应电流第一次开始改变方向
解析:选D 在t=时刻导线有进入磁场,切割磁感线的有效长度为零,故回路中感应电动势为零,根据右手定则可知在0~时间内回路中的感应电流沿杆从a到b,以后将改为从b到a,故选项A、C错,D对。在t=时刻导线有进入磁场,切割磁感线的有效长度为d,故回路中感应电动势为Bdv,B错。
4.(2013·新课标全国卷Ⅰ)如图5所示,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线,可能正确的是(  )

图5

图6
解析:选A 设金属棒MN向右匀速运动的速度为v,金属棒电阻率为ρ,金属棒截面积为S,∠bac=2θ。在t时刻MN产生的感应电动势为:E=2Bv2ttan θ,回路中电阻为R=ρ,由I=可得:I=,故选项A正确。
5.(2013·山东高考)将一段导线绕成图7甲所示的闭合回路,并固定在水平面(纸面)内。回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中。回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图像如图乙所示。用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是(  )

图7

图8
解析:选B 本题考查电磁感应中的图像问题,意在考查考生利用法拉第电磁感应定律及楞次定律、左手定则处理电磁感应综合问题的能力。0~时间内,根据法拉第电磁感应定律及楞次定律可得回路的圆环形区域产生大小恒定的、顺时针方向的感应电流,根据左手定则,ab边在匀强磁场Ⅰ中受到水平向左的恒定的安培力;同理可得~T时间内,ab边在匀强磁场Ⅰ中受到水平向右的恒定的安培力,故B项正确。
6.(2014·安徽师大摸底)如图9所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd,ab边的边长为l1,bc边的边长为l2,线框的质量为m,电阻为R,线框通过绝缘细线绕过光滑的滑轮与重物相连,重物质量为M,斜面上ef线(ef平行底边)的上方有垂直斜面向上的匀强磁场,磁感应强度为B,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab边始终平行底边,则下列说法正确的是(  )

图9
A.线框进入磁场前运动的加速度为
B.线框进入磁场时匀速运动的速度为
C.线框做匀速运动的总时间为
D.该匀速运动过程产生的焦耳热为(Mg-mgsin θ)l2
解析:选D 由牛顿第二定律,Mg-mgsin θ=(M+m)a,解得线框进入磁场前运动的加速度为,选项A错误;由平衡条件,Mg-mgsin θ-F安=0,F安=BIl1,I=E/R,E=Bl1v,联立解得线框进入磁场时匀速运动的速度为v=,选项B错误;线框做匀速运动的总时间为t=l2/v=,选项C错误;由能量守恒定律,该匀速运动过程产生的焦耳热等于系统重力势能的减小,为(Mg-mgsin θ)l2,选项D正确。
二、多项选择题
7.(2014·焦作一模)如图10所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,cd间、de间、cf间分别接着阻值R=10 Ω的电阻。一阻值R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场。下列说法中正确的是(  )

图10
A.导体棒ab中电流的流向为由b到a
B.cd两端的电压为1 V
C.de两端的电压为1 V
D.fe两端的电压为1 V
解析:选BD 由右手定则可知ab中电流方向为a→b,A错误。导体棒ab切割磁感线产生的感应电动势E=Blv,ab为电源,cd间电阻R为外电路负载,de和cf间电阻中无电流,de间无电压,因此cd和fe两端电压相等,即U=×R==1 V,B、D正确,C错误。
8. (2014·绍兴模拟)两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R,导轨所在平面与匀强磁场垂直。将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g,如图11所示。现将金属棒从弹簧原长位置由静止释放,则(  )

图11
A.金属棒在最低点的加速度小于g
B.回路中产生的总热量等于金属棒重力势能的减少量
C.当弹簧弹力等于金属棒的重力时,金属棒下落速度最大
D.金属棒在以后运动过程中的最大高度一定低于静止释放时的高度
解析:选AD 如果不受安培力,杆和弹簧组成了一个弹簧振子,由简谐运动的对称性可知其在最低点的加速度大小为g,但由于金属棒在运动过程中受到与速度方向相反的安培力作用,金属棒在最低点时的弹性势能一定比没有安培力做功时小,弹性形变量一定变小,故加速度小于g,选项A正确;回路中产生的总热量等于金属棒机械能的减少量,选项B错误;当弹簧弹力与安培力之和等于金属棒的重力时,金属棒下落速度最大,选项C错误;由于金属棒运动过程中产生电能,金属棒在以后运动过程中的最大高度一定低于静止释放时的高度,选项D正确。
9.(2014·江苏名校质检)如图12所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B。有一质量为m、长为l的导体棒从ab位置获得平行于斜面的、大小为v的初速度向上运动,最远到达a′b′的位置,滑行的距离为s,导体棒的电阻也为R,与导轨之间的动摩擦因数为μ。则(  )

图12
A.上滑过程中导体棒受到的最大安培力为
B.上滑过程中电流做功发出的热量为mv2-mgs(sin θ+μcos θ)
C.上滑过程中导体棒克服安培力做的功为mv2
D.上滑过程中导体棒损失的机械能为mv2-mgssin θ
解析:选ABD 本题考查的是电磁感应定律和力学的综合问题,上滑过程中开始时导体棒的速度最大,受到的安培力最大为;根据能量守恒,上滑过程中电流做功发出的热量为mv2-mgs(sin θ+μcos θ);上滑过程中导体棒克服安培力做的功等于产生的热也是mv2-mgs(sin θ+μcos θ);上滑过程中导体棒损失的机械能为mv2-mgssin θ。
10.两根足够长的光滑导轨竖直放置,间距为L,顶端接阻值为R的电阻。质量为m、电阻为r的金属棒在距磁场上边界某处静止释放,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图13所示,不计导轨的电阻, 重力加速度为g,则(  )

图13
A.金属棒在磁场中运动时,流过电阻R的电流方向为a→b
B.金属棒的速度为v时,金属棒所受的安培力大小为
C.金属棒的最大速度为
D.金属棒以稳定的速度下滑时,电阻R的热功率为2R
解析:选BD 金属棒在磁场中向下运动时,由楞次定律可知,流过电阻R的电流方向为b→a,选项A错误;金属棒的速度为v时,金属棒中感应电动势E=BLv,感应电流I=E/(R+r),所受的安培力大小为F=BIL=,选项B正确;当安培力F=mg时,金属棒下落速度最大,金属棒的最大速度为v=,选项C错误;金属棒以稳定的速度下滑时,电阻R和r的热功率为P=mgv=2(R+r),电阻R的热功率为2R,选项D正确。
三、非选择题
11.如图14所示,金属杆MN在竖直平面内贴着光滑平行金属导轨下滑,导轨的间距l=10 cm,导轨上端接有R=0.5 Ω的电阻,导轨与金属杆的电阻不计,整个装置处于B=0.5 T的水平匀强磁场中,磁场方向垂直于导轨平面。当金属杆MN下滑时,每秒钟有0.02 J的重力势能减少,求MN杆下滑的速度的大小(不计空气阻力)。

图14
解析:当杆匀速下滑时,重力的功率等于电路的电功率,设重力的功率为P,则有:
P=E2/R①
由法拉第电磁感应定律得:
E=Blv②
联立①②解得: 
v= /Bl
代入数据得: v=2 m/s
即棒下滑的速度大小为2 m/s
答案:2 m/s
12.(2013·盐城模拟)如图15所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一个电子元件,其阻值与其两端所加的电压成正比,即R=kU,式中k为常数。框架上有一质量为m,离地高为h的金属棒,金属棒与框架始终接触良好无摩擦,且保持水平。磁感应强度为B的匀强磁场方向垂直于框架平面向里。将金属棒由静止释放,棒沿框架向下运动,不计金属棒电阻,重力加速度为g。求:

图15
(1)金属棒运动过程中,流过棒的电流的大小和方向;
(2)金属棒落到地面时的速度大小;
(3)金属棒从释放到落地过程中通过电子元件的电量。
解析:(1)流过电阻R的电流大小为I==
电流方向水平向右(从a→b)
(2)在运动过程中金属棒受到的安培力为
FA=BIL=
对金属棒运用牛顿第二定律,
mg-FA=ma
得a=g-恒定,金属棒作匀加速直线运动
根据v2=2ax,v= 
(3)设金属棒经过时间t落地,
有h=at2
解得t= = 
Q=I·t= 
答案:(1)水平向右(从a→b) (2)  (3) 


 

下载说明:

1.
云计班班通资源主要来源于网站用户上传,如有侵犯版权,请与客服联系,本网将在三个工作日内处理。
客服邮箱:service@yjbbt.com 客服专线:4006-690-418 客服QQ:8641595
2.
如果发现不能正常下载该资源,请检查以下问题;如检查后正常,请举报该资源。
(1)是否为网站内的注册用户,是否登录本网站;
(2)账户内的云币是否足额;
(3)账户内的精品点是否足额。
3.
如果发现下载的资料存在问题,可向网站客服投诉。请明确告知资源名称、下载地址及存在问题。投诉问题经查证属实,将双倍返还消费的云币。
4.
未经本站许可,任何网站不得非法盗链及抄袭本站资料(如引用,请注明来自本站)。一经发现, 云计班班通保留采用法律手段追诉的权利。

资源评论列表

发表评论

点击左侧字符可切换验证码